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We numerically evaluate the entanglement spectrum �singular value decomposition of the wave function� of
paired states of fermions in two dimensions that break parity and time-reversal symmetries, focusing on the
spin-polarized px+ ipy case. The entanglement spectrum of the weak-pairing �BCS� phase contains a Majorana
zero mode, indicating non-Abelian topological order. In contrast, for the strong-pairing �Bose-Einstein con-
densation� phase, we find no such mode, consistent with Abelian topological order.
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I. INTRODUCTION

Two-dimensional fermion systems with pairing that
breaks parity and time-reversal symmetries come in a variety
of forms including quantum Hall fluids,1 superfluids,2

superconductors,3 and condensates of cold atoms near a
Feshbach resonance.4 For spin-polarized fermions, the sim-
plest pairing order parameter that breaks these symmetries,
�p� px+ ipy, depends on the relative momentum p of the
fermions in a pair. For momentum independent s-wave pair-
ing, a smooth crossover occurs from weak pairing �BCS� to
strong pairing �Bose-Einstein condensation �BEC��. In the
px+ ipy case, the two phases have different topological orders
and are separated by a quantum phase transition.5

Recent proposals for fault-tolerant quantum computation
and information processing rely on topological order in fer-
mion systems with px+ ipy pairing,6 but detecting and char-
acterizing such order remain open problems. For example,
the symmetry and bulk spectral properties of the BCS and
BEC phases are identical, but they have dramatically differ-
ent topological order: quantum vortices have non-Abelian
statistics in the weak-pairing phase and Abelian statistics in
the strong-pairing phase. We apply ideas from quantum in-
formation to investigate topological order in these interesting
paired fermion systems.

The entanglement spectrum7 and the entanglement
entropy8 contain information about the universal properties
of a quantum state. We define them by dividing the system
into a block A with feature size L and an environment B and
then performing a Schmidt decomposition,

��� = �
i

e−�1/2��i��i
A� � ��i

B� . �1�

Here, the orthonormal sets of states ���i
A�	, ���i

B�	 span A and
B. The entanglement spectrum ��i	 gives the entanglement
entropy S=�i �ie

−�i.
In this Rapid Communication, we report large-scale nu-

merical calculations of the entanglement entropy and spec-
trum of two-dimensional fermion systems with px+ ipy pair-
ing. We find that the entanglement spectrum qualitatively
distinguishes the topological order occurring in the two
phases. In particular, we find that the low-lying spectrum in
the weak-pairing phase contains a chiral gapless fermion ex-

citation. The weak-pairing phase is known to have a chiral
gapless Majorana edge mode.5 This mode is related to the
Majorana zero mode that appears in vortex cores and gives
vortices non-Abelian statistics.5,9

We reduce the problem of evaluating the entanglement
spectrum and entanglement entropy to diagonalizing a qua-
dratic entanglement Hamiltonian.10 This approach does not
include fluctuations of the pairing order parameter, and,
hence, we do not expect to observe a universal topological
term in the entanglement entropy11 in either the weak-pairing
or strong-pairing phase12 despite the fact that both phases
have nontrivial quantum dimension D=2. Indeed, we con-
firm that the size of the leading correction term depends on
the geometry of the block and is in fact proportional to the
number of corners.13 In contrast, the entanglement spectrum
detects non-Abelian topological order in the ground-state
wave function for states of paired fermions even when pair-
ing fluctuations are neglected.

II. PAIRING HAMILTONIAN

The following BCS Hamiltonian14 serves as a minimal
model for a single band of spin-polarized fermions with
px+ ipy pairing on a square lattice:

H = �

r,r��

�− tcr
†cr� − �r,r�cr

†cr�
† + H.c.� + 2��

r
cr

†cr. �2�

We consider only nearest-neighbor 
r ,r�� hopping t and pair-
ing �r,r� interactions. The hopping strength t and coupling �
are taken to be real and positive, without loss of generality.
The pairing interaction �r,r� breaks both time-reversal and
parity symmetries: �r,r+x̂=−�r,r−x̂= i�r,r+ŷ =−i�r,r−ŷ = i�. Here,
� is real and x̂ , ŷ are the primitive translation vectors of the
square lattice. We use periodic boundary conditions in our
numerical calculations.

The pairing Hamiltonian �2� is quadratic and can be
solved exactly using a Bogoliubov transformation,15 yielding
the phase diagram shown in the inset of Fig. 1.5 The critical
line at �c=2t separates the weak-pairing �BCS� phase from
the strong-pairing �BEC� phase. Both phases have a spectral
gap E0= t��−�c� to bulk excitations shown in the inset of Fig.
1 and determined by minimizing the Bogoliubov quasiparti-
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cle dispersion: Ep=��p
2+ ��p�2. The pairing order parameter

�p=2��sin px+ i sin py� transforms under the symmetries of
the square lattice in the same way as an �=1,�z=1 spherical
harmonic. At small p, we expand �p� px+ ipy and see the
px+ ipy pairing explicitly. Similarly, at small p, the single-
particle kinetic energy �p=−2t�cos px+cos py�+2� takes the
form �p= p2 /2m�−�, with effective mass m�=1 /2t and
�=4t−2�. The weak-pairing phase ���c corresponds to
�	0, while strong-pairing �	�c corresponds to ��0.
Near the quantum phase transition �=0, the low-energy
spectrum Ep=�4�2p2+�2 has a relativistic form with 2�
playing the role of the speed of light.

III. ENTANGLEMENT HAMILTONIAN

The two-point correlation functions provide a complete
description of the ground state of quadratic Hamiltonian �2�
and allow an efficient numerical evaluation of Schmidt de-
composition �1�.10 In fact, the Schmidt decomposition of the
pairing Hamiltonian ground state reduces to diagonalizing
the following entanglement Hamiltonian He which acts on
the sites of the block A �Ref. 15�:

He = �
r,r�

Cr,r��cr
†cr� + H.c.� + �

r,r�

�Fr,r�cr
†cr�

† + H.c.� . �3�

Here, in contrast to Eq. �2�, the hopping parameters
Cr,r�=�d2p / �2
�2eip·�r−r���Ep−�p� /2Ep and pairing param-
eters Fr,r�=�d2p / �2
�2eip·�r−r���p /2Ep extend beyond nearest
neighbors and are given by the two-point correlation func-
tions in the ground state of pairing Hamiltonian �2�. The
entanglement Hamiltonian is quadratic and can be
exactly solved by numerically performing a Bogoliubov
transformation to the quasiparticle operators �n for
n= �1, �2, . . . , �NA, where NA is the number of sites in

the block A.15 In terms of the quasiparticles, the entangle-
ment Hamiltonian has the form He=�n	0 f�n��n

†�n, where
f��= �e+1�−1 is the Fermi function and the quasiparticle
block energies �n	 generate the entanglement spectrum. In
particular, the entanglement entropy is given by
S=−�n f�n�ln f�n�.

IV. RESULTS

The entanglement entropy S as a function of the block
size L is shown in Fig. 1. We consider various � sweeping
through the quantum phase transition, as shown in the inset.
The entropy grows linearly with L for this two-dimensional
system. We interpret this as a perimeter law SL=aL+¯,
where the ratio of the correction terms to L vanishes in the
limit L→�. Our large-scale numerical results agree with
general arguments that a perimeter law must hold in the
gapped phases.16 At the quantum critical point, the gap van-
ishes at a Majorana point,5 and no theoretical predictions or
previous numerical results are available.

Using these large-scale numerical results, we are able to
extract the leading correction to the perimeter law
�S=−3�S−aL�.17 We plot the size dependence of the leading
correction �Ssq for the square shaped partition shown in Fig.
2�a� and for the cross-shaped partition �Scr shown in Fig.
2�b�. For both geometries, the leading correction grows at the
critical point with L, without sign of saturation. By contrast,
in the weak-pairing and strong-pairing phases, the leading
correction saturates to an L independent value as L→�. We
interpret the growth at the critical point as a logarithmic di-
vergence of the form S=aL−b ln L+¯. This is indication
that a Majorana point exhibits a logarithmic correction to the

FIG. 1. �Color online� Entanglement entropy S between a square
of side length L and its environment as a function of � at fixed
pairing strength �=1.0. �Inset� The zero-temperature phase diagram
of two-dimensional fermions with px+ ipy pairing and plot of the
bulk spectral gap E0. The phase boundary between weak pairing
and strong pairing is the vertical �-independent line at �c=2t. The
spectral gap vanishes at the critical coupling and grows linearly
with ��−�c�. Data points indicate the parameters chosen in our nu-
merical calculations �t=1�.

FIG. 2. �Color online� Leading correction term �S to the perim-
eter law for a �a� square and �b� cross-shaped partitions as a func-
tion of block size L. �Inset� geometry of the partitions. Notice the
linear scale for �S and the logarithmic scale for L in both �a� and
�b�. Solid lines are guides for the eyes. Ratio �Scr /�Ssq of the
leading correction terms from �a� and �b� as a function of block size
L: �c� within the weak-pairing and strong-pairing phases; �d� ap-
proaching the quantum phase transition from the strong-pairing
regime.
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perimeter law for the entanglement entropy. Additive loga-
rithmic corrections have been observed in two-dimensional
systems with other kinds of nodal excitations.17–19

In Figs. 2�c� and 2�d�, we analyze the geometry depen-
dence by plotting the ratio of the leading correction
�Scr /�Ssq for the two partition geometries. In both strong-
pairing and weak-pairing phases �Fig. 2�c��, the ratio
�Scr /�Ssq→3 approaches the ratio of the number of corners
in the cross partition to the number in the square partition.
We have examined other geometries and find the behavior
�S=cnc, where nc is the number of corners and c is a posi-
tive coefficient.13 In contrast, when pairing fluctuations are
allowed, the topological term �S=3 ln 2 has no geometry
dependence.11 To check that our results reflect the asymptotic
behavior of the system, we reduce the detuning from the
critical point while staying on the BEC side �see Fig. 2�d��.
For system size L�� much bigger than the diverging length
scale �=2� / ���� ��−�c�−1, the behavior �Scr /�Ssq→3 ob-
served deep within the gapped phases �Fig. 2�c�� emerges
near the critical point as well. Thus, these large-scale numeri-
cal simulations indicate a geometric origin of the leading
correction to the perimeter law for the entanglement entropy.

To detect topological order, we turn to the entanglement
spectrum shown in Fig. 3. Now, in the weak-pairing phase,
the energy spectrum of pairing Hamiltonian �2� for a system
in the form of a disk of radius R contains a chiral fermion
edge mode with energy E�m /R proportional to angular mo-
mentum m.5 To detect such a mode in the square geometry,
one must label the quasiparticle block energies �n	 by the
phase factor �n=0,
 /2,
 ,3
 /2 acquired by the quasiparti-
cle wave function under the elementary 
 /2 rotation sym-
metry of the square lattice. This phase factor plays the role of
angular momentum in a lattice system.

In the weak-pairing phase �Fig. 3�a��, we find that both
the energy n�n and the phase factor 2�n /
=n�mod 4� are
proportional to the level index n=1,2 , . . .. Eliminating the
level index, we find n��n. This is precisely the relationship

expected for a gapless chiral mode and observed in the weak-
pairing phase of pairing Hamiltonian �2� along an edge.5 In
the strong-pairing phase �Fig. 3�c��, the phase factor �n and
level index have no apparent relationship. At the critical
point �Fig. 3�b�� the phase factor and level index are propor-
tional for the lowest levels but have no relationship for
higher quasiparticle block energy. We contrast the disper-
sionless low-lying spectrum in the strong-pairing phase with
the linearly dispersing spectrum in the weak-pairing phase
and compare the weak-pairing result �� to the energy
spectrum E�m of pairing Hamiltonian �2� in the weak-
pairing phase.19

To test the identification further, we show in Fig. 4 the
finite-size scaling of the minimum quasiparticle block energy
1 plotted on a log-log scale at fixed pairing amplitude
�=1.0. For pairing Hamiltonian �2� on a disk of radius R, the
minimum quasiparticle energy scales as E1�1 /R in the
weak-pairing phase and tends to a constant in the strong-
pairing phase as R→�. In Fig. 4, the data for the strong-
pairing phase �	�c tend to a constant as L→�. By contrast,
in the weak-pairing phase ��2.0, the minimum block en-
ergy drops to zero 11 /L for system sizes L�� large com-
pared to the diverging length scale �=2� / ��−�c� character-
izing critical fluctuations. In the quantum critical regime,
L��, the finite-size scaling of the minimum quasiparticle
energy is intermediate between those of weak- and strong-
pairing phases. Remarkably, the contrast in Fig. 4 between
the finite-size scaling of the weak-pairing and strong-pairing
phases occurs even for relatively small block sizes L /��1.
On the other hand, the data in Figs. 2�c� and 2�d� show that
the finite-size corrections to the entanglement entropy re-
quire significantly larger systems L /��3 to see the
asymptotic behavior.

V. CONCLUSION

In this Rapid Communication, we study topological order
in paired states of fermions with parity and time-reversal
symmetry breaking. Large-scale numerical calculations of
the entanglement spectrum and entanglement entropy reveal
universal behavior. In particular, we find a chiral gapless

FIG. 3. Low-lying quasiparticle entanglement spectrum �n	 �a�
in the weak-pairing phase, �b� at the quantum phase transition, and
�c� in the strong-pairing phase with fixed pairing strength �=1.0
and system size L=24. We divide the spectrum into four sectors,
corresponding to the irreducible representations of the point group
of the square lattice and labeled by the phase factor acquired by the
quasiparticle wave function during a 
 /2 rotation.

FIG. 4. �Color online� Finite-size scaling of the minimum qua-
siparticle block energy 1 plotted on a log-log scale at fixed pairing
amplitude �=1.0. In the weak-pairing phase ��2.0, the dashed
lines are best fits to the scaling form 11 /L.
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Majorana fermion excitation in the entanglement spectrum of
the weak-pairing phase and contrast this with the gapped
spectrum in the strong-pairing phase. A variety of topological
phases can be described by a pairing Hamiltonian that ne-
glects order parameter fluctuations. We suggest that large-
scale numerical calculations of the entanglement spectrum
are a robust way to detect and characterize non-Abelian to-
pological order in the ground-state wave function of such
phases.
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